Идентификация по радужной оболочке глаза - Zeniza.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Идентификация по радужной оболочке глаза

ТБ Эксперт

Обеспечение транспортной безопасности

Биометрическая идентификация человека по радужной оболочке глаза

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов.

Биометрическое распознавание по радужной оболочке глаза является одним из самых надежных способов благодаря генетически обусловленной уникальности радужной оболочки глаза, которая различается даже у близнецов. Основным источником информации для идентификации этим способом служит специфическая ткань, которая окончательно формируется в глазах человека еще до рождения, примерно на 8-м месяце беременности матери. В медицине радужную оболочку глаза рассматривали в качестве инструмента для диагностики различных заболеваний, в частности, было обнаружено, что при определенных заболеваниях на радужной оболочке глаза появляются так называемые пигментные пятна. Для уменьшения влияния этого фактора на результат распознавания в биометрических системах используют черно-белые (полутоновые) изображения. Технология биометрического распознавания по радужной оболочке предусматривает несколько степеней защиты:

  • идентификация пользователя при условии затенения (или повреждения) радужной оболочки, но не более, чем на 2/3, то есть по оставшейся 1/3 изображения возможна идентификация с вероятностью ошибки 1 к 100 000;
  • обнаружение замены глаза и контактных линз на роговице – за счет контроля размера зрачка (система отличает живой глаз от изображения глаза, искуственного глаза и неживого глаза за счет использования инфракрасного освещения для определения состояния ткани глаза и контроля расширения/сужения зрачка).

Преимуществами технологии биометрического распознавания по радужной оболочке являются:

— независимость от косвенных факторов, таких как прическа, грим, макияж, и прочее;

— вероятность пропуска незарегистрированного пользователя равна вероятности ложного отказа в допуске зарегистрированному пользователю и составляет 1 к 1 200 000 (это самый высокий показатель по сравнению с другими типами биометрического распознавания).

Как работает система биометрического распознавания человека по радужной оболочке глаза? Технология распознавания базируется на формировании до 266 уникальных точек идентификации на изображении роговицы, решение принимается на основании результатов сравнения с точек идентификации с эталонными данными базы авторизованных пользователей. Захват видеоизображения глаза осуществляется регистрирующей аппаратурой на расстоянии до одного метра. Далее, система выполняет ряд действий: выделение зрачка, сбор и подсчет точек идентификации радужной оболочки, принятие решения и верификации или идентификации.

Мы протестировали высокоточную систему биометрического распознавания человека по радужной оболочке глаза, разработанную компанией eyeLock (США). Эта система обеспечивает быстрое распознавание человека на расстоянии и в движении. Оборудование eyeLock применяется для создания систем биометрического контроля и управления доступом (СКУД) на объектах с повышенными требованиями обеспечения безопасности, таких как: опасные производства, центры обработки данных, банки, объекты транспортной инфраструктуры. Для построения системы контроля доступа с биометрическим распознаванием по радужной оболочке eyaLock предлагает несколько типов оборудования: NANO NXT, HBOX, MYRIS.

NANO NXT – комплексное устройство, выполняющее функции считывателя биометрических данных, устройства обработки данных для выполнения алгоритма идентификации, хранилища эталонных данных базы авторизованных пользователей и контроллера управления замком или запирающим устройством. Устройство легко интегрировать в существующую систему управления доступом.

  • Регистрация и проверка соответствия самим устройством — «On Board»
  • Распознавание в темных очках или цветных линзах
  • Хранение в памяти «On Board» записей на 20 000 человек
  • Регистрация по 1 или 2 глазам
  • Возможность подключения кардридера для обеспечения двухфакторной аутентификации (глаза + карта)
  • Типы (протоколы) подключения: Wiegand, F/2/F, OSDP, PAC, реле и Ethernet для простой интеграции со всеми существующими платформами и СКУД
  • Питание через PoE (IEEE 802.3af)

HBOX — комплексное устройство, устанавливаемое на проходных с высокой пропускной способностью, обеспечивает биометрическое распознавание на расстоянии до 1,6 метра потока людей со скоростью 50 человек в минуту. Темные очки и цветные контактные линзы не являются препятствием для работы HBOX.

MYRIS — устройство для контроля логического доступа пользователей к информационным ресурсам. Устройство позволяет обеспечить дополнительную защиту доступа к информационным ресурсам предприятия и надежную идентификацию/авторизацию пользователей, это может быть актуально, например, для доступа к банковским системам при совершении операций повышенного риска и в других подобных случаях.

Методы распознавания радужной оболочки глаз. Часть 1

Не так давно идентификация людей по радужной оболочке глаз казалась фантастической технологией, использующейся только для защиты суперсекретных военных и правительственных объектов. Но с развитием искусственного интеллекта биометрический анализ проник в обычные смартфоны и уже умеет узнавать владельца по лицу. В этой статье мы расскажем, как с помощью нейросетей можно распознать радужную оболочку глаз по фотографиями, снятым на камеру телефона.

Введение

Радужная оболочка — видимая невооружённым взглядом часть глаза, располагающаяся между зрачком и склерой. Рисунок оболочки уникален для каждого человека и не меняется с возрастом, поэтому технология его распознавания является одной из самых эффективных способов идентификации личности. Традиционные системы безопасности используют инфракрасные камеры и излучатели, позволяющие наблюдать гораздо больше деталей текстуры. Но конструктивно их довольно тяжело использовать в обычных смартфонах из-за большой мощности и тепловыделения. Поэтому возникла необходимость научиться распознавать радужную оболочку в видимом свете.

Одно из исследований проводилось в рамках конкурса NICE (Noisy Iris Challenge Evaluation) с использованием набора данных UBIRIS (University of Beira Iris). Датасет содержит изображения глаз, снятые с расстояния от четырёх до восьми метров в различных условиях. Многие фотографии сделаны с плохой фокусировкой, неудачным углом обзора, плохим освещением и другими зашумлениями для имитации реальных трудностей, с которыми можно столкнуться при распознавании радужной оболочки. На рисунке ниже показаны примеры снимков низкого качества.

(a) — глаза находятся за очками, (b) — взгляд под углом и блик, (c) — размытие, (d) — глаз закрыт веком и ресницами

Для этой задачи применяются как алгоритмические, так и нейросетевые методы. Исследователи из университета Донгук разработали два новых метода, основанных на свёрточных нейронных сетях. Первый метод применяется только к обычным фотографиям и использует три свёрточных архитектуры. Второй алгоритм основан на нейросети IrisDenseNet и может применяться как к изображениям, снятым при видимом свете, так и к инфракрасным снимкам.

Метод 1. Три нейросети

Общий ход алгоритма показан на рисунке ниже. Сначала по исходной фотографии определяется радужная оболочка и зрачок. Затем идентифицируются две периокулярные зоны, которые немного шире, чем область оболочки. Обнаруженные регионы преобразуются в три нормализованных изображения с полярными координатами, чтобы вычислить радиус радужной оболочки. Полученные кадры используются в качестве входных данных для трёх CNN, которые извлекают из них особые признаки и вычисляют расстояние (оценку) между обнаруженными и истинными признаками. Путём слияния трёх значений вычисляется общая оценка, на основе которой выполняется распознавание радужной оболочки.

— Получение трёх изображений

Периокулярные области помогают в тех случаях, когда рисунок радужки плохо различим из-за различных искажений. Они расширяют исследуемую зону, чтобы в дальнейшем избежать потери важных деталей и точнее выполнить нормализацию.

— Нормализация

Размер радужных оболочек может отличаться даже у глаз одного человека. Кроме того, зрачок может расширяться или сужаться при изменении уровня освещения. Чтобы эти факторы не влияли на процесс, выполняется нормализация полученных областей в изображения с полярными координатами, разделённые на секторы — одинаковые участки размером в один пиксель. Всего получается 8×256 секторов.

— CNN

Традиционные архитектуры, такие как AlexNet и VGGNet, обычно принимают на вход квадратные фотографии и используют симметричные фильтры. Однако полученные в результате нормализации изображения имеют несимметричный размер (8×256), поэтому предварительно обученные CNN для них не подходят. Чтобы решить эту проблему, исследователи предложили новую структуру нейросети с несимметричными фильтрами.

Сеть состоит из восьми свёрточных слоёв и использует нестандартные размеры фильтров: 1x13x3, 1x13x64, 1x13x128 и так далее. Причины использования таких размеров заключались в том, что ширина изображения в полярных координатах намного превышает высоту, а вертикальная корреляция рисунка радужки больше, чем горизонтальная. Следовательно, эту избыточность можно уменьшить только с помощью фильтра, ширина которого намного больше высоты.

Завершают структуру три полносвязных слоя. Подобная архитектура используется для всех трёх свёрточных нейросетей.

— Результаты экспериментов

Используемый датасет NICE.II содержит 1000 фотографий глаз и 171 класс. Для качественного обучения нейросети такого объёма данных обычно недостаточно. Поэтому датасет был дополнен до 81000 образцов с помощью различных операций над изображениями, а затем разделён на две подвыборки A и B примерно по 40000 образцов в каждой.

Читайте также:  Смешанный астигматизм у детей

Для обучения нейросети использовался фреймворк Caffe, кросс-энтропийная функция потерь и оптимизатор Adam.

Оценка точности модели проводилась с помощью биометрических метрик:

— ложное распознавание (False Access Rate, FAR)

— отказ распознавания (False Reject Rate, FRR)

Уровень ошибок в случае, когда FAR=FRR, называется EER (equal error rate) и обычно применяется для сравнения разных биометрических методов (чем он меньше, тем лучше). Также для оценки модели использовался индекс чувствительности (d-Prime Value) — чем выше его значение, тем эффективнее работает биометрическая система.

Чтобы оценить модель на фотографиях, снятых на обычные смартфоны, исследователи провели эксперимент с датасетом MICHE. Он содержит снимки глаз, сделанные на iPhone 5, Galaxy Tab2 и Galaxy S4. В таблице ниже можно увидеть сравнение описанного метода с другими существующими алгоритмами. Оценки ERR и d-Prime показывают, что решение достигает более высокой точности.

В дальнейшем исследователи планируют улучшить точность распознавания, разработав более глубокую структуру CNN и дополнив её другими методами извлечения признаков из изображений.

Метод 2. IrisDenseNet

Алгоритм также предназначен для распознавания радужной оболочки глаза по обычным фотографиям. Исходное изображение отправляется в свёрточную нейросеть IrisDenseNet без какой-либо предварительной обработки. В процессе распознавания модель определяет семантическую сегментацию для радужной оболочки.

На рисунке ниже показана архитектура нейросети. Она состоит из 13 слоёв и использует сочетание двух методов: свёрточная сеть с усиленным распространением признаков (DenseNet) и сеть типа энкодер-декодер SegNet. Это позволяет значительно улучшить процесс извлечения и распознавания признаков.

Архитектура включает пакетную нормализацию и функцию активации ReLU. Нейросеть обучалась с нуля на упомянутом наборе данных NICE.II, который также был расширен с помощью различных методов дополнения данных.

На рисунке ниже показаны успешные результаты сегментации, полученные IrisDenseNet.Эффективность метода измеряется метрикой Ea — средней ошибкой (чем меньше, тем лучше). Для наглядного представления результата определены два типа ошибок: ложноположительная и ложноотрицательная. Первая — ложноположительная классификация пикселя, не принадлежащего радужной оболочке, а вторая — ложноотрицательная классификация пикселя оболочки. Ложноположительные и отрицательные ошибки отмечены зелёным и красным цветами соответственно.

Алгоритм также был протестирован на наборе данных MICHE и показал следующие результаты:

Видно, что метод превосходит предыдущие. Исследователи планируют оптимизировать его, уменьшив число слоёв нейросети без потери точности, чтобы сделать её более быстрой и доступной для использования на смартфонах.

Распознавание радужной оболочки — инновационный и надёжный метод биометрической аутентификации. Искусственный интеллект делает эту технологию более доступной для использования в камерах видеонаблюдения, смартфонах и прочих способах контроля доступа и безопасности. Кроме того, такая идентификация снизила бы риск отказа систем распознавания лиц.

В следующей части статьи мы покажем практический кейс для распознавания и отслеживания глаз в реальном времени. Пишите в комментариях, пользуетесь ли вы биометрическими сенсорами? Снимаете блокировку отпечатком пальца, или может применяете Face Unlock?

C оригинальными материалами (1, 2) можно ознакомиться на сайте Национального центра биотехнологической информации.

Идентификация по глазу

В некоторых системах идентификации в качестве ключа используется глаз человека. Существует две разновидности этих систем, использующие разные идентификаторы. В первом случае в качестве «носителя» идентификационного кода применяется рисунок капилляров (кровеносных сосудов) на сетчатке (дне) глаза, а во втором — узор радужной оболочки глаза.
Для начала рассмотрим способ идентификации по узору кровеносных сосудов, расположенных на поверхности глазного дна (сетчатке). Сетчатка расположена глубоко внутри глаза, но это не останавливает современные технологии. Более того, именно благодаря этому свойству, сетчатка – один из наиболее стабильных физиологических признаков организма. Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Для этих целей используется лазерный луч мягкого излучения. Вены и артерии, снабжающие глаз кровью, хорошо видны при подсветке глазного дна внешним источником света. Еще в 1935 году Саймон и Голдштейн доказали уникальность дерева кровеносных сосудов глазного дна для каждого конкретного индивидуума.
Сканеры для сетчатки глаза получили большое распространение в сверхсекретных системах контроля доступа, так как у них один из самых низких процентов отказа доступа зарегистрированных пользователей. Кроме того, в системах предусмотрена защита от муляжа.
В настоящее время широкому распространению этого метода препятствует ряд причин:
высокая стоимость считывателя;
невысокая пропускная способность;
психологический фактор.
Невысокая пропускная способность связана с тем, что пользователь должен в течение нескольких секунд смотреть в окуляр на зеленую точку.
Примером такого устройства распознавания свойств сетчатки глаза может служить продукция EyeDentify’s. Она использует камеру с сенсорами, которые с короткого расстояния (менее 3 см) измеряют свойства сетчатки глаза. Пользователю достаточно взглянуть одним глазом в отверстие камеры ICAM 2001, и система принимает решение о праве доступа. Основные характеристики считывателя ICAM 2001:
время регистрации (enrolment) — менее 1 мин;
время распознавания при сравнении с базой эталонов в 1 500 человек — менее 5 с; средняя пропускная способность — 4—7 с.
И тем не менее, эти системы совершенствуются и находят свое применение. В США, например, разработана новая система проверки пассажиров, основанная на сканировании сетчатки глаза. Специалисты утверждают, что теперь для проверки не нужно доставать из кармана бумажник с документами, достаточно лишь пройти перед камерой. Исследования сетчатки основываются на анализе более 500 характеристик. После сканирования код будет сохраняться в базе данных вместе с другой информацией о пассажире, и в последующем идентификация личности будет занимать всего несколько секунд. Использование подобной системы будет абсолютно добровольной процедурой для пассажиров.
Английская Национальная физическая лаборатория (National Physical Laboratory, NPL), по заказу организации Communications Electronics Security Group, специализирующейся на электронных средствах защиты систем связи, провела исследования различных биометрических технологий идентификации пользователей.
В ходе испытаний система распознавания пользователя по сетчатке глаза не разрешила допуск ни одному из более чем 2,7 млн «посторонних», а среди тех, кто имел права доступа, лишь 1,8% были ошибочно отвергнуты системой (проводилось три попытки доступа). Как сообщается, это был самый низкий коэффициент ошибочных решений среди проверяемых систем биометрической идентификации. А самый большой процент ошибок был у системы распознавания лица — в разных сериях испытаний она отвергла от 10до 25% законных пользователей.
Еще одним уникальным для каждой личности статическим идентификатором является радужная оболочка глаза. Уникальность рисунка радужной оболочки обусловлена генотипом личности, и существенные отличия радужной оболочки наблюдаются даже у близнецов. Врачи используют рисунок и цвет радужной оболочки для диагностики заболеваний и выявления генетической предрасположенности к некоторым заболеваниям. Обнаружено, что при ряде заболеваний на радужной оболочке появляются характерные пигментные пятна и изменения цвета. Для ослабления влияния состояния здоровья на результаты идентификации личности в технических системах опознавания используются только черно-белые изображения высокого разрешения.
Идея распознавания на основе параметров радужной оболочки глаза появилась еще в 1950-х годах. Джон Даугман, профессор Кембриджского университета, изобрел технологию, в состав которой входила система распознавания по радужной оболочке, используемая сейчас в Nationwide ATM. В то время ученые доказали, что не существует двух человек с одинаковой радужной оболочкой глаза (более того, даже у одного человека радужные оболочки глаз отличаются), но программного обеспечения, способного выполнять поиск и устанавливать соответствие образцов и отсканированного изображения, тогда еще не было.
В 1991 году Даугман начал работу над алгоритмом распознавания параметров радужной оболочки глаза и в 1994 году получил патент на эту технологию. С этого момента ее лицензировали уже 22 компании, в том числе Sensar, British Telecom и японская OKI.
Получаемое при сканировании радужной оболочки глаза изображение обычно оказывается более информативным, чем оцифрованное в случае сканирования отпечатков пальцев.
Уникальность рисунка радужной оболочки глаза позволяет выпускать фирмам целый класс весьма надежных систем для биометрической идентификации личности. Для считывания узора радужной оболочки глаза применяется дистанционный способ снятия биометрической характеристики.
Системы этого класса, используя обычные видеокамеры, захватывают видеоизображение глаза на расстоянии до одного метра от видеокамеры, осуществляют автоматическое выделение зрачка и радужной оболочки. Пропускная способность таких систем очень высокая. Вероятность же ложных срабатываний небольшая. Кроме этого, предусмотрена защита от муляжа. Они воспринимают только глаз живого человека. Еще одно достоинство этого метода идентификации – высокая помехоустойчивость. На работоспособность системы не влияют очки, контактные линзы и солнечные блики.
Преимущество сканеров для радужной оболочки состоит в том, что они не требуют, чтобы пользователь сосредоточился на цели, потому что образец пятен на радужной оболочке находится на поверхности глаза. Даже у людей с ослабленным зрением, но с неповрежденной радужной оболочкой, все равно могут сканироваться и кодироваться идентифицирующие параметры. Даже если есть катаракта (повреждение хрусталика глаза, которое находится позади радужной оболочки), то и она никак не влияет на процесс сканирования радужной оболочки. Однако плохая фокусировка камеры, солнечный блик и другие трудности при распознавании приводят к ошибкам в 1% случаев.
В качестве такого устройства идентификации можно привести, например, электронную систему контроля доступа «Iris Access 3000», созданную компанией LG. Эта система за считанные секунды считывает рисунок оболочки, оцифровывает его, сравнивает с 4000 других записей, которые она способна хранить в своей памяти, и посылает соответствующий сигнал в систему безопасности, в которую она интегрирована. Система очень проста в эксплуатации, но при этом, данная технология
обеспечивает высокую степень защищенности.
Считыватель сетчатки объекта. Модель ICAM 2001. В состав системы входят:
устройство регистрации пользователей EOU 3000;
оптическое устройство идентификации / оптический считыватель ROU 3000;
контроллер двери ICU 3000;
сервер.
Устройство регистрации пользователей EOU 3000 обеспечивает начальный этап процесса регистрации пользователей. Оно снимает изображение радужной оболочки глаза при помощи камеры и подсветки. В процессе получения изображения и при его завершении устройство использует голосовую и световую подсказку.
Оптическое устройство идентификации, оно же оптический считыватель ROU 3000, содержит элементы для получения изображения радужной оболочки глаза. Голосовая и световая индикация информирует пользователя, определен он системой или нет.
Контроллер двери ICU 3000 создает специальный код (IrisCode) изображения сетчатки глаза, получаемой от считывателя ROU, сравнивает этоткод с уже имеющимися в его памяти кодами изображений. При идентификации соответствующего кода, результат сообщается голосом из динамика в считывателе ROU
3000. К контроллеру возможно подключение до четырех считывателей ROD 3000, что обеспечивает управление четырьмя дверями.
Сервер выполнен на базе персонального компьютера. Он выполняет функции главного сервера, сервера,
станции регистрации пользователей, станции мониторинга и управления системой. Главный сервер контролирует передачу информации из базы данных по запросу от одного сервера другим серверам. Сервер отвечает за управление рабочими станциями и контроллерами дверей ICU. Станция ввода изображения обеспечивает регистрацию пользователей при помощи устройства EOU 3000. Станция мониторинга производит отслеживание статуса контроллеров ICU, оптических считывателей ROU? устройства регистрации и состояния дверей ROU. Станция управления обеспечивает поддержку основной базы данных пользователей, загрузку необходимых данных в контроллер ICU.
Пример построения системы доступа на основе электронной системы распознавания радужной оболочки глаза «Iris Access 3000» представлен на рисунке.

Читайте также:  Оптическая когерентная томография сетчатки

Перспективы распространения этого способа биометрической идентификации для организации доступа в компьютерных системах очень хорошие. Тем более, что сейчас уже существуют мультимедийные мониторы со встроенными в корпус видеокамерами. Поэтому на такой компьютер достаточно установить необходимое программное обеспечение, и система контроля доступа готова к работе. Понятно, что и ее стоимость при этом будет не очень высокой.

Акции! Скидки!

Покажите предложение конкурентов и мы сделаем вам гарантированную скидку 10% и больше на эти работы.


При заказе монтажа Охранно-пожарной сигнализации, пожаротушения скидка на техническое обслуживание смонтированных систем 30%.


При заказе огнезащитной обработки свыше 1500 м2 протокол испытаний образцов из ИПЛ бесплатно.


Обслуживание пожарной сигнализации от 1000 рублей в месяц .

Проект бесплатно.

При заказе пожарной или охранной сигнализации
от 50 000 рублей проект бесплатно.

Работаем по бартеру.

Вы оплачиваете оборудование и материалы, оплата работ возможна бартером.

Идентификация по радужной оболочке глаза

Содержание

2018: Сканеры радужной оболочки глаза научили отличать мертвого человека от живого

В июле 2018 года стало известно о том, что сканеры радужной оболочки глаза «научились» отличать мертвого человека от живого. В будущем это поможет избежать хакерских атак на системы, которые идентифицируют пользователя по глазам.

Исследователи из Варшавского технологического университета разработали построенный на искусственном интеллекте алгоритм, способный определять, принадлежит ли глаз живому либо мертвому человеку. Причем точность распознавания, как утверждают разработчики, составляет почти 99%. Технология работает на базе сверточной нейросети VGG-16, используемой для анализа изображений.

Разработка была протестирована на 830 фотографиях, на которых запечатлены радужные оболочки глаз живых и умерших людей. В случае с последними брались снимки, сделанные от 5 часов до 34 дней после смерти. Съемка осуществлялась на одну и ту же камеру, чтобы минимизировать технические погрешности в исследовании.

Во время обучения алгоритма ученым пришлось вырезать с фотографий отводы, которые позволяют держать глаза мертвого человека открытыми, а также другие элементы — все, кроме изображения радужной оболочки.

Компьютер ошибался только в случае, если смерть произошла менее пяти часов назад, поскольку за это время внешние признаки смерти проявляются не слишком очевидно, особенно для искусственного интеллекта. Кроме того, заявленная 99-процентная точность распознавания не гарантируется, если с момента наступления смерти прошло менее 16 часов.

В Варшавском технологическом университете планируют доработать свой алгоритм, чтобы он смог улучшить биометрическую идентификацию и снизить вероятность взлома систем, работающих с радужными оболочками глаза. В первую очередь, технология должна предотвратить попытки несанкционированного доступа с использованием глаз умершего. [1]

2017: Российские банки будут идентифицировать клиентов по сетчатке глаза

Биометрическая аутентификация приобретает все большую популярность у российских банков. Как сообщает в августе 2017 года издание «Известия», уже в ближайшие несколько лет финорганизации будут идентифицировать личности своих клиентов по сетчатке глаза.

Ближе всех к цели группа ВТБ – система сканирования сетчатки будет внедрятся уже со следующего года. Клиенты смогут подтверждать свою личность путем сканирования сетчатки как в отделениях банка, так и при проведении транзакций на некоторых мобильных устройствах (в настоящее время уже ведутся переговоры с производителями смартфонов), терминалах самообслуживания и в банкоматах. Как считают в ВТБ, такой способ аутентификации может использоваться при осуществлении любых операций, нужно лишь устройство, позволяющее сканировать сетчатку.

Бинбанк планирует ввести аутентификацию по сетчатке в следующие 2-3 года. Финорганизация рассматривает сканирование сетчатки как дополнительную меру защиты доступа к сейфовой ячейке и переводов крупных денежных сумм.

Возможность внедрения системы аутентификации по сетчатке глаза также изучает Тинькофф-банк. По мнению специалистов, данная система является гораздо более надежной и точной по сравнению со сканированием отпечатков пальцев или лица. Однако они отмечают сложность реализации подобного проекта. Для сбора электронных образцов и проведения самого сканирования требуется дорогостоящее оборудование и непосредственный контакт с клиентами.

2016: Южная Корея – KEB Hana Bank и Woori Bank

Летом 2016 года два крупнейших банка Южной Кореи – KEB Hana Bank и Woori Bank вводят систему идентификации пользователей мобильного банкинга по сетчатке глаза. Об этом сообщили пресс-службы финансовых учреждений.

“Система идентификации заработает позже в этом месяце, когда в стране начнутся продажи телефона Galaxy Note 7 компании Samsung, который оснащен сканером сетчатки глаза”, – отмечается в пресс- релизе. Ожидается, что запуск новой системы позволит значительно повысить уровень безопасности пользователей, защитив их от действующих в интернете мошенников.

“Технология распознавания сетчатки глаза крайне продвинута и сложна, что делает практически любые попытки взлома бесполезными”, – подчеркивается в документе. В нем также отмечается, что данные о сетчатке глаза пользователя будут храниться на самом телефоне, а не на серверах компаний. Это позволит одновременно обеспечить дополнительную защиту пользователя и сделать использование мобильного банкинга более простым.

Третий крупнейший южнокорейский банк, Shinhan Bank также рассматривает возможность запуска подобной системы.

Google патентует систему сканирования радужной оболочки в контактных линзах

Летом 2015 года стало известно, что компания Google давно работает над контактными линзами и различными вариантами их использования. Патентная заявка рассказывает о ещё одном из этих вариантов: сканировании радужной оболочки глаза в биометрических целях [2] .

Ранее у Google были идеи создания линз со встроенными незаметными камерами и линз с возможностью анализа уровня сахара в крови через слёзную жидкость. Новый метод биометрического сканирования должен стать более сложным для взлома, нежели датчики отпечатков пальцев. Заявка была подана 2 июня 2015 года и описывает линзы и цепи с световыми датчиками над радужной оболочкой. Они сканируют оболочку и создают её отпечаток, который сравнивается с содержащимся в устройстве образцом. При совпадении пользователь может войти в свой аккаунт или разблокировать устройство. Для работы линз потребуется беспроводной источник питания. Поскольку целью является повышение пользовательской безопасности, можно отказаться от предоставления персональной информации и собираемые системой данные будут анонимными.

Читайте также:  Зрачки разного размера причины

У контактных линз могут быть и другие варианты применения. Например, ввод небольших доз лекарств (вроде инсулина) через короткие промежутки времени вместо более редких инъекций с большими дозами. Другая возможность – ночное видение для людей с проблемами со зрением. Или же, содержащееся в слёзной жидкости вещество лакриглобин способствует обнаружению разных видов рака – груди, лёгких, мозга, так что линзы могут помочь в раннем обнаружении болезни или мониторинге ремиссии.

Fujitsu разработала аутентификацию пользователя смартфона

Fujitsu разработала в начале 2015 года технологию аутентификации пользователя смартфона [3] , позволяющую сделать это по радужной оболочке глаза за счет буквально одного взгляда: аутентификация занимает меньше секунды [4] .

Это проще, чем набирать код, или прикладывать палец (который может быть грязным или его просто физически неудобно приложить). Аутентификация по радужке (фактически распознается цвет области вокруг зрачка) работает в технологии Fujitsu даже если пользователь носит прозрачные очки или контактные линзы.

Для работы технологии в состав смартфона входит дополнительное аутентификационное оборудование, которое весит менее одного грамма. В частности, в нем содержится миниатюрный инфракрасные датчик и камера.

Первоначально пользователь регистрирует свою радужку путем взгляда в две специальных окружности на экране. Данные хранятся исключительно на смартфоне. Позже для аутентификации нет необходимости близко подносить смартфон к лицу, как во многих других системах аутентификации по радужке. Так, в издании Daily Mail отмечено, что новая система работает на расстоянии до 22 см против традиционных технологий идентификации, работающих на расстоянии порядка 10 см.

В состав продукта Fujitsu входит специальный алгоритм, разработанный калифорнийской компанией Delta ID. Fujitsu работает над корпоративной версией своего нового решения.

2014: Google и контактные линзы

В 2014 году Google анонсировала сотрудничество со швейцарской фармацевтической компанией Novartis, которая обещает начать производство линз к 2019 году. Google имеет ряд конкурентов в сфере контактных линз будущего. Швейцарская компания Sensimed хочет измерять воспаление глаз у пациентов с глаукомой; американская Innovega может превратить линзы в дисплеи с высоким разрешением без вреда для зрения; университет Мичигана работает над инфракрасными линзами для ночного видения.

Я милого узнаю по сетчатке: современные методы идентификации по биометрическим показателям

Дактилоскопия — наиболее известный и распространенный метод установления личности по биометрическому параметру, отлично зарекомендовала себя в криминалистике XX века и помогла раскрыть ни одну сотню преступлений. Однако технологии не стоят на месте, и отпечатки пальцев перестали быть единственным «ключом» к идентификации.

Современная техника научились узнавать пользователей по сетчатке и радужной оболочке глаза, форме лица и рук и ряду динамических характеристик — голосу, биологической активности сердца, рукописному и клавиатурному почерку.

Идентификация по радужной оболочке глаза

Подобно отпечатку пальца, рисунок радужной оболочки глаза является уникальной характеристикой человека, а метод установления личности по этому биометрическому параметру, по мнению экспертов, превосходит в надежности привычную дактилоскопию. Для того, чтобы зафиксировать узор на радужке, нужна фотокамера с высоким разрешением. Полученное изображение увеличивается и преобразуется в уникальный код, присваиваемый человеку.

Рисунок радужки, который окончательно формируется на втором году жизни ребенка, практически не изменяется в течение жизни, если человек не получает травм и не страдает от серьезных офтальмологических патологий. В то же время, папиллярный узор отпечатка пальца подвержен изменению даже в результате мелких бытовых повреждений — ожогов или порезов, что делает этот метод идентификации менее эффективным, чем анализ радужной оболочки.

Достоинством метода является и простота в сканировании. Человеку не обязательно сосредоточенно смотреть в одну точку, ведь пятна на сетчатке находятся прямо на поверхности глазного яблока и легко считываются на расстоянии, не превышающем 1 метр. Использовать данный метод удобно в банковских организациях или общественном транспорте. Заинтересовались технологией и производители смартфонов — в 2015 году в Японии в продажу поступила первая модель со сканером радужной оболочки — Fujitsu Arrows NX F-04G. По мнению разработчиков, внедрение технологии идентификации по радужке глаза поможет защитить личные данные владельцев смартфонов.

Идентификация по сетчатке

Просканировать сетчатку — внутреннюю оболочку глазного яблока, реагирующую на свет, сложнее: для этого к кровеносным сосудам задней стенки глаза через зрачок посылают низкоинтенсивные инфракрасные световые лучи. Подобный метод установления личности считается высокоэффективным и активно используется на правительственных и военных объектах.

Капилярный рисунок сетчатки различается даже у близнецов, что снижает вероятность ошибки идентификации. Однако, в 2012 году ученые из Университета Нотр-Дам в США обнаружили погрешности в определении личностей людей, чьи данные были внесены в базу ранее 2008 года, и доказали, что, в отличие от рисунка на радужной оболочке, рисунок сетчатки подвержен ряду возрастных изменений.

И снова производители мобильных гаджетов не остались в стороне. Ряд компаний (например, китайская ZTE CORPORATION) работает на созданием комбинированных технологий идентификации по сетчатке и радужке.

Распознавание по «геометрии» лица

Метод установления личности по чертам кажется экспертам одним из наиболее перспективных, во многом благодаря своей «привычности»: люди с легкостью идентифицируют друг друга по лицам, так почему бы не научить этому компьютер? В основе технологии — создание двухмерных или трехмерных «карт» человеческих черт — система запоминает и опознает контуры носа и губ, форму бровей, расстояние между отдельными чертами.

Разработчики систем биометрического анализа отечественной компании BioLink называют распознавание по лицу второй по распространенности и популярности биометрической технологией. Однако, «опознание» по геометрии лица — задача трудоемкая, ведь на восприятие машины влияет освещение, угол наклона головы, наличие макияжа.

Наиболее эффективно техника распознает статичные изображения — фотографии. Так, система искусственного интеллекта FaceNet, созданная Google, “опознала” 99,63% фото пользователей интернета.

Распознавание по биологической активности сердца

Одна из новейших технологий динамической биометрической идентификации — установление личности на основе данных о работе сердечно-сосудистой системы.

В 2014 году Канадская компания Bionym представила миру устройство, позволяющее использовать ЭКГ человека в качестве персонального идентификатора. «В научном сообществе существует устоявшаяся идея о том, что уникальность и постоянство человеческого сердечного ритма позволяет использовать его в качестве биометрического идентификатора», — заметил генеральный директор Bionym Карл Мартин. — «В сущности, нужно сделать следующее: взять форму ЭКГ и подвергнуть ее машинному анализу, чтобы выявить уникальные и постоянные особенности».

Высокую эффективность технологии отметили отечественные специалисты по безопасности. «Кардиограмма, как оказывается, тоже может быть вполне перспективным средством биометрической аутентификации,» — отмечали эксперты «Лаборатории Касперского».

Подобные разработки уже сейчас ведутся в России. Например, представители отечественной компании CardioQVARK (о них уже были статьи на Хабре и Гиктаймс), производящей чехлы-кардиомониторы для iPhone, в работе «Исследование искусственных нейронных сетей в задаче идентификации личности по электрокардиосигналу» показали, что их продукт может помочь в установлении личности пользователей.

Основное назначение устройства — удаленный контроль за состоянием здоровья пациентов-сердечников, однако возможность сделать экспресс-анализ состояния сердечно-сосудистой системы позволит идентифицировать человека без временных затрат. Процедура снятия ЭКГ при помощи чехла от CardioQVARK предельно проста и занимает всего лишь несколько секунд: достаточно приложить пальцы к датчикам и результат ЭКГ появится на экране гаджета и в приложении для врача.

Анализ голоса

Биометрический метод идентификации по голосу прост в применении — достаточно оснастить аналитическое устройство микрофоном и записать «звучание» конкретного человека. Широкое распространение данного метода обусловлено наличием микрофона и возможности записи звука на большинстве современных мобильных гаджетов и компьютеров. Однако, технология имеет ряд существенных недостатков: голос одного и того же человека может звучать по-разному в зависимости от его психологического и физического состояния, уровня шума, качества микрофона.

Ссылка на основную публикацию
×
×
Для любых предложений по сайту: [email protected]